Influence of fractal kinetics on molecular recognition.

نویسنده

  • M A Savageau
چکیده

Molecular recognition is a central issue for nearly every biological mechanism. The analysis of molecular recognition to date has been conducted within the framework of classical chemical kinetics, in which the kinetic orders of a reaction have positive integer values. However, recent theoretical and experimental advances have shown that the assumptions inherent in this classical framework are invalid under a variety of conditions in which the reaction environment may be considered nonideal. A good example is provided by reactions that are spatially constrained and diffusion limited. Bimolecular reactions confined within two-dimensional membranes, one-dimensional channels or fractal surfaces in general exhibit kinetic orders that are noninteger. An appropriate framework for the study of these nonideal phenomena is provided by the Power-Law formalism, which includes as special cases the Mass-Action formalism of chemical kinetics and the Michaelis-Menten formalism of enzyme kinetics. The Power-Law formalism is an appropriate representation not only for fractal kinetics per se, but also for other nonideal kinetic phenomena, provided the range of variation in concentration is not too large. After defining some elementary concepts of molecular recognition, and showing how these are manifested in classical kinetic terms, this paper contrasts the implications of classical and fractal kinetics in a few simple cases. The principal distinction lies in the ability of fractal kinetics to nonlinearly transform, rather than proportionally transmit, the input S/N ratio. As a consequence, fractal kinetics create a threshold for the input signal below which no recognition occurs and above which amplified recognition takes place.(ABSTRACT TRUNCATED AT 250 WORDS)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractal-Like Kinetics Study of Adsorption on Multi-walled Carbon Nanotube

The fractal degree of adsorption on the multi-walled carbon nanotube has been investigated. The fractal-like Langmuir kinetics model has been used to obtain the fractal degree of ion adsorption on multi-walled carbon nanotube. The behavior of the fractal-like kinetics equation was compared with some famous rate equations like Langmuir, pseudo-first-order and pseudo-second-order equations. It is...

متن کامل

FONT DISCRIMINATIO USING FRACTAL DIMENSIONS

One of the related problems of OCR systems is discrimination of fonts in machine printed document images. This task improves performance of general OCR systems. Proposed methods in this paper are based on various fractal dimensions for font discrimination. First, some predefined fractal dimensions were combined with directional methods to enhance font differentiation. Then, a novel fractal dime...

متن کامل

Application of Power-Law Frequency Fractal Model for Recognition of Vertical Cu Distribution in Milloieh Porphyry Deposit, SE Iran

Identification of the vertical and horizontal distributions for elemental grades is of an important sign in different mineral exploration stages. The main aim of this work is to determine the vertical distribution directional properties of Cu values in the Milloieh Cu porphyry deposit, Kerman (SE Iran) using the power-law frequency fractal model. This work is carried out based on four mineraliz...

متن کامل

A Numerical Simulation Study on the Kinetics of Asphaltene Particle Flocculation in a Two-dimensional Shear Flow

In the current study, the kinetics of asphaltene particle flocculation is investigated under a shear flow through numerical simulation. The discrete element method (DEM) is coupled with computational fluid dynamics (CFD) to model the agglomeration and fragmentation processes. In addition, a coalescence model is proposed to consider the attachment of colliding particles. The changes in mean asph...

متن کامل

Sliding Friction Contact Stiffness Model of Involute Arc Cylindrical Gear Based on Fractal Theory

Gear’s normal contact stiffness played an important role in the mechanical equipment. In this paper, the M-B fractal model is modified and the contact surface coefficient is put forward to set up the fractal model, considering the influence of friction, which could be used to calculate accurately the involute arc cylindrical gears’ normal contact stiffness based on the fractal theory and Hertz ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular recognition : JMR

دوره 6 4  شماره 

صفحات  -

تاریخ انتشار 1993